Rice Plant Development: from Zygote to Spikelet
نویسندگان
چکیده
منابع مشابه
Rice plant development: from zygote to spikelet.
Rice is becoming a model plant in monocotyledons and a model cereal crop. For better understanding of the rice plant, it is essential to elucidate the developmental programs of the life cycle. To date, several attempts have been made in rice to categorize the developmental processes of some organs into substages. These studies are based exclusively on the morphological and anatomical viewpoints...
متن کاملRunning head : MFS 1 regulates spikelet development in rice Corresponding
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of spikelet remains unclear. In this study, we identified a rice spikelet mutant, multi-floret spikelet1 (mfs1), which showed delayed transformation of spikelet meristems to floral meristems, this resulted in an extra hull-like organ and an elongated rachilla. In addition, the steril...
متن کاملMethyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice.
Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and low...
متن کاملTHIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice.
Proper branching and successful reproductive growth is of great importance for rice productivity. Substantial progress has been made in uncovering the molecular mechanisms underlying tillering control and spikelet sterility. However, rice tillering is developmentally controlled, and how it is regulated coordinately with reproductive growth remains unclear. This study characterized a rice mutant...
متن کاملThe rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.
Regulating the transition of meristem identity is a critical step in reproductive development. After the shoot apical meristem (SAM) acquires inflorescence meristem identity, it goes through a sequential transition to second- and higher-order meristems that can eventually give rise to floral organs. Despite ample information on the molecular mechanisms that control the transition from SAM to in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant and Cell Physiology
سال: 2005
ISSN: 1471-9053,0032-0781
DOI: 10.1093/pcp/pci501